Question Bank

ঐচ্ছিক পাঠক্রম (Elective Course)

অঙ্গ (Mathematics)

অন্তম পত্ৰ (8th Paper)

Mathematical Analysis - II: EMT-08

1. Consider two partitions P and Q of the closed interval [0,1]as follows :- $P: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, 1\right\}, Q: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1\right\}$

Is Q a refinement of P?

নীচে[0,1]বদ্ধঅন্তরালেদুটিবিভাজন P এবং Q দেওয়া হলো -

$$P:\left\{0,\frac{1}{8},\frac{1}{4},\frac{1}{2},\frac{3}{4},\frac{7}{8},1\right\},\quad Q:\left\{0,\frac{1}{8},\frac{1}{4},\frac{3}{8},\frac{1}{2},\frac{3}{4},1\right\}$$

এখানে Q কে P এর একটি সৃক্ষ্ম বিভাজন বলা যাবে কি?

2. If $f(x) = x^2 \quad \forall \ x \in [a,b]$ and if $P: \{a,a+h,\ a+2h,...,a+nh=b\}$ be a partition of [a,b] then find the supremum and infimum of f(x) in the r-th subinterval.

যদি $f(x) = x^2 \quad \forall \ x \in [a,b]$ হয় এবং $P: \{a,a+h,\ a+2h,...,a+nh=b\}$, [a,b]অন্তরের একটি বিভাজন হয় তাহলেf(x)এর r-তমউপান্তরে লঘিষ্ঠ উপ্রেসীমা ও গরিষ্ঠ নিম্নসীমা নির্ণয় করুল।

3. If $f:[0,1] \rightarrow R$ defined as

$$f(x) = x \quad \forall x \in [0,1] \cap Q$$

= 0 elsewhere

Then find $\int_{\underline{0}}^{1} f(x)dx$ and $\int_{0}^{\overline{1}} f(x)dx$

 $f:[0,1] \to R$ নিম্নলিখিতভাবে সংজ্ঞায়িত

$$f(x) = x \quad \forall \ x \in [0,1] \cap Q$$

= 0 অন্যথায়

তাহলে $\int_0^1 f(x) dx$ এবং $\int_0^{\overline{1}} f(x) dx$ এর মান নির্ণয় করুন।

4. If f(x) is defined in [0,1] as

$$f(x) = (-1)^{r-1}$$
, $\frac{1}{r+1} < x \le \frac{1}{r}$, $r = 1,2,3 \dots$

$$= 0$$
 , $x = 0$

then prove that f(x) is integrable in [0,1].

[0,1] অন্তরে f(x)এর সংজ্ঞা হল

$$f(x) = (-1)^{r-1}$$
, $\frac{1}{r+1} < x \le \frac{1}{r}$, $r = 1,2,3 \dots$

$$= 0$$
 , $x = 0$

তাহলে প্রমাণ করুন যে f(x), [0,1] অন্তরে সমাকলনযোগ্য।

5. Let f(x) be defined on the interval [0,1] as follows:-

$$f(x) = 1$$
 when x is rational

= -1 x is irrational

Prove that f(x) is not integrable in the interval [0, 1] but |f(x)| is integrable.

[0,1]অন্তরে f(x)অপেক্ষকটি নিম্নোক্ত ভাবে সংজ্ঞায়িত

$$f(x) = 1$$
যখন x মূলদ

$$=-1$$
 যখন x অমূলদ

তাহলে প্রমাণ করুন যে f(x), [0,1] অন্তরে সমাকলনযোগ্য নয় কিন্তু |f(x)|, [0,1] অন্তরে সমাকলনযোগ্য।

6. Prove that the improper integral $\int_0^1 \frac{1}{x^2} dx$ is divergent.

প্রমাণ করুন যে অযথার্থ সমাকলন $\int_0^1 \frac{1}{x^2} dx$ অপসারী।

7. If $I_n = \int_0^\pi \frac{\sin n\theta \ d\theta}{\sin \theta}$ then prove that $I_n = \pi$ if n is an odd positive integer.

 $I_n=\int_0^\pi rac{sinn heta d heta}{sin heta}$ হলে প্রমাণ করুন যে n অযুগ্ম ধনাত্মক পূর্ণসংখ্যা হলে $I_n=$

π হবে।

8. Prove that the improper integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent if m>0 and n>0.

প্রমাণ করুন যে $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ এই অযথার্থ সমাকলনটি অভিসারী হবে, যদি m>0 এবং n>0হয়।

9. Prove that $\int_0^1 \frac{1}{x^2} dx$ is an improper integral of second kind.

প্রমাণ করুন যে $\int_0^1 \frac{1}{r^2} dx$ একটি দ্বিতীয় রকমের অযথার্থ সমাকলন।

10. Prove that $\int_0^\infty e^{-x} x^{-\frac{1}{2}} dx = \sqrt{\pi}$.

প্রমাণ করুন যে $\int_0^\infty e^{-x} x^{-\frac{1}{2}} dx = \sqrt{\pi}$.

11. Prove that the series is $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$ converges to 1.

প্রমাণ করুন যে $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$ এই শ্রেণীটি অভিসারী এবং যোগফল 1.

12. Prove that the series $\sum_{k=0}^{\infty} (1-x)x^k$, for $0 \le x \le 1$ is absolutely convergent but not uniformly convergent.

প্রমাণ করুন যে $\sum_{k=0}^{\infty}(1-x)x^k$ শ্রেণীটি [0,1] অন্তরালে নিঃশর্তভাবে অভিসারী কিন্তু সমভাবে অভিসারী নয়।

13. Prove that the radius of convergence of the series

$$\frac{1}{3} - x + \frac{x^2}{3^2} - x^3 + \frac{x^4}{3^4} - x^5 + \frac{x^6}{3^6} - \dots$$
 is 1.

দেখাও যে $\frac{1}{3} - x + \frac{x^2}{3^2} - x^3 + \frac{x^4}{3^4} - x^5 + \frac{x^6}{3^6} - \cdots$ এই শ্রেণীটির অভিসরণ ব্যাসার্ধ হল 1.

14. Find the Fourier constants of the function f(x) = x $(-\pi \le x \le \pi)$.

 $f(x) = x(-\pi \le x \le \pi)$ এই অপেক্ষকের ফুরিয়ার ধ্রুবকগুলির মান নির্ণয় করুন।

15. Prove that the integral $\int_0^\pi \frac{dx}{1-\cos x}$ is an improper integral of second kind and is not covergent.

প্রমাণ করুন যে $\int_0^\pi \frac{dx}{1-cosx}$ সমাকলনটিএকটি দ্বিতীয় রকমের অযথার্থ সমাকলন যা অভিসারী নয়।